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I. INTRODUCTION

This report is a summary of the major research results obtained under
Contract N00O0O14-78-C-0443. Work under this contract was direced at a
general class of Linear-Quadratic-Gaussian control problems herein called
"cumulant control” problems.

Over the past few years, Liberty and colleagues [1},[2] and [3] have
investigated probabilistic questions surrounding the random performance
measure normally associated with linear stochastic control systems. Early
work was aimed at finding an analytical means of evaluating the perfgfnance
of such systems [3]. Results of this effort consisted of a solution to
the "performance analysis' problem. These results allow the determination
of complete statistical descriptions of system performance without requiring
stochastic simulation,

Work, idmediately preceeding that reported here, was direcéed at
finding statistical descriptions of performance for design purposes [4].
This development was a natural analytical extension of the performance
analysis results. It led to a promising analytical structure for design
as well as a demonstration of the existence of control laws that achieve
less variance of performance than the classical Linear-Quadratic-Gaussian
controller.

The original statement of a "cumulant control problem" was contained
in [4] but not actually solved. Despite the promise of the new formulation,
it was not clear how to actually solve a cumulant control problem involving
statistical parameters other than the mean. The primary objective of the
research summarized here was to resolve the principal difficulty blocking
solution of problems in the cumulant class.

Loosely speaking, the difficulty involves enforcement of an "admissi-

bility" constraint on the set of control actions over which optimization
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of cumulant indices of system performance is carried out. In this class
of stochastic optimal control problems, performance indices consist of
linear combinations of mean-conditional-cumulants of a quadratic per-
formance measure attached to a linear stochastic system. The investiga-
tion was carried out for discrete time systems over a f;gisp time inter-
val. The resulting figige d?fggsiongl setting removed difficulty en-
countered in the continuous time case in seeing the essence of the ng
missibility enforcement question.

Mean-conditional-cumulants appear in this work as E{KGIN} where Ka|N
is the a-order cumulan; of performance, conditioned on system output
observations from time 0 to time N. Linear combinations of these objects
are to be minimized over all control actions in an "admissible" class.
Essentially, to be admissible, a control action must be determined by a
physically realizable operation on system output observations. The key
result reported here is the discovery of a set of random variables {x;}

with the property that

E{Ka} = E{xaln}. 1)

It can be shown that constrained (with respect to admissibility) optimiza-
tion over linear combinations of the latter objects is equivalent to con-

strained optimization over mean-conditional-cumulants.
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I1. SYSTEM DESCRIPTION

Let P denote the set of intsgers {0,1,...,N} and let RY denote the g-
fold Cartesian product of the real line. In this work, several vector-
valued random sequences will be defined on the discrete time interval P.

It will be understood that all expressions containing these random sequences
hold on the interval P unless otherwise spccifie&.

Consider the problem of controlling the noisy system described on P
by

x(kel) = A(k)x(k) + B(k)u(k) + £(k) (2)
and

z(k) = C(k)x(k) + 8(k) 3

where the state x(k)ekn, the control action u(k)eRm. and the observation
z(k)eRr. The initial condition for (2), x(0), is assumed Gaussian with
mean

X, = E{x(0)} (4)

and covariance

T
Zo = E{[x(0) - x°][x(0) - x°] }, (S)

where E{*} symbolizes the expectation operation and (T) denotes matrix
transposition.
Let the observation noise, ©, and the state process noise, £, be

zero-mean Gaussian white processes with

E(E(k)0T (L)} = 0, (6)
E([x(0) - x,J§T(O)} = 0, )
E{[x(0) - x )87 ()} = 0, (8)
E(ECE ()} = Z()6 4, (9
E(8(K)67 (1)} = B(KIE,y, (10)
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where O(k) and Z(k) are positive definite and positive semi-definite on 4
P. Here, sz is the Kroneker delta.

Attach to (2) a performance measure, J, defined by

N o1 | T
J é ki [x" (k)Q(k)x(k) + u (k-1)R(k-1)u(k-1)], (11)
a1

where the weighting matgix, Q(k), is positive semi-definite on P and the
weighting matrix, R(k), is positive definite on P. Both Q(k) and R(k) are
symmetric matrices.

The control objective is to find a control sequence, u(*), in a par-
ticular class (called admissible) such that a certain statistical per-

formance index (formed from mean-conditional-cumulants of J) is minimized.

Mean-conditional-cumulants are introduced in Section III. The admissible
class of control actions is described as follows.
Let
u(k) = f(k;z) (12)
where

£:Pxz[P]+R™

is an operator mapping time k and an output sequence z(°*) to a control
sequence value u(k). The set of output sequences on P is denoted by Z[P].
The admissible class of feedback control laws is determined by f opera-
tors that are
1. causal
and
2. satisfy the growth condition

[1£(k;g) -~ £(k;h)||<e||g-h|] (13)

for all keP, for all g,heZ[P], and for some €>0. An operator, f, is

causal if whenever g(o) = h(g) for o<keP, then f(k;g) = £(k;h). 1




I1I1. CONDITIONAL CUMULANTS OF J

Since feedback control laws are being sought, it is desirable to
formulate statistical indices of J such that optimization over these
indices will directly couple control action to past observations. The
secret to such a formulation lies in the use of the conditional expecta-
‘tion operator, E{-le} where Fk is the minimal o-algebra induced by the
set of observations {z(t):te[0,k]}. By definition, there are no observa-
tions when k = -1. When k = N, FN will be written without a subscript. An
interpretation of Fk for k>0 is that it represents the minimal information
necessary to describe uncertainty about x(0), {§(t):te[0,k-1]}, and
{e(t):te[0,k]} after {z(t):te(0,k]} is known.

The particular statistical indices presented in this section are con-

ditional cumulants. These objects are selected bacause of their inherent
quadratic structure. This property of cumulants of quadratic performance
measures was first observed by Liberty in [1] and exploited in [2], [3]
and [4]. Optimization over quadratic performance indices will lead to
linear control structures. |

It is necessary at this point to introduce some notation. It is well
known that E{x(k)[F} is the smoothed least squares estimate of x(k} which
will be denoted by

Rk jN) & Elx(x) |FY. (14)

Sl

Let the smoothed estimate error covariance kernel, Fs(k,l) be defined
—_—

s |

k0 & E(x(0) - KNI x@ - 22NTIF 1,

= E{Z(k|N)XT (2|N) [F}, (15)
where %
Rk(N) & x() - RN, (16) |
5
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is the error in the smoothed estimate of the state vector. Then, if the
linear Gaussian assumptions of equations (2) through (10) are satisfied,
and if the control action u(*) is admissible,

E(Ps(k.l)} = T (k,0). an

That is, Ps(k,L) is not random.

Next, define the iterated kernel, Fz(k,l), as
s A N a-1
Ps(k.l) ) Fs(k,d)Q(c)F s (0,8), a>1, (18)
a=1

where

r;(k,z) g r (k). (19)

Also define

k
Ny.q (kIM 2 2 ik, D@ |N)

- F3 M QIRKIN , 01, (20)
It can be shown that the conditional cumulants of J can be expressed as
N
K”N=k2'mwgmmqwn+
=]

(21)

N
. kz [RTk [N)QEK)R(K|N) + uT (k-1)R(k-1)u(k-1)] :
=] "
and ;
N
cy|y = @112 L TRITSK, QM)
o N aT
+a!2” ] & kNQn,_, kN, a1, (22)

=]
where TR[*] denotes the matrix trace operator. Equations (21) and (22)
are single summation expressions of the conditiopal cumulantg.in terms of. . .

dynamical (but physically unrealizable) variables x(+|N) and na_1(°|N).

Note that both (21) and (22) contain uncontrollable terms.
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IV. THE CUMULANT CONTROL PROBLEM CLASS

The conditional cumulant expressions given by (21) and (22) can be
placed under expectation to yield interesting statistical parameters of J.
They are inteQesting because they have a quadratic structure in the dy-
namical variables i(°|N) and na(-lN), and because these variables can be
expressed explicitly in terms of the observation sequence z(°*). The
precise statistical interpretation of mean-conditional-cumulants is given
in [4].

It is now possible to define a class of optimal control problems,
called "cumulant control" problems, in terms of mean-conditional-cumulants.

Let A denote the class of admissible control actions

for the system described by (2)-(10) with performance measure

J as given in (11). Let KaIN’ a2l, be conditional cumulants

of J, and let My be non-negative scalar constants for a>2.

Then, for each set of K scalar constants a cumulant control

problem is specified by the statement

K
Minimize E{c . + )} B« .}
ued 1N " L, TaralN

subject to the dynamical constraints on x(*[N) and na('lN).
Note that when ua = 0, 2¢0¢K, the cumulant control problem specified is
precisely the minimum mean Linear-Quadratic-Gaussian problem since

Elk, 4} = E{J}.

1|N
Although the class of cumulant control problems is clearly specified, it
is not so clear how one should carry out the indicated minimization. The
specific point of concern is enforcement of the admissibility requirement.
This point is particularly bothersome when one notes (as at the end of

Section III) that the conditional cumulants have been explicitly expressed

in terms of noncausal dynamical variables. The results summarized in this

7
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section resolve this difficulty.

If the conditional cumulants were expressed in terms of causal dy-
namical variables, which in turn were driven by the observation sequence,
then standard optimization techniques, applied under expectation to all
control-observation sequence pairs, would couple the control action to
these variables and an admissible, optimal-control action would be realized.
Clearly, this is not the case_for the conditional cumulants. However, it
can be shown that portions of the conditional cumulant formulations are
zero under expectation. The portions that remain contain only causal
variables and optimization over these new objects yields physically realizable

control action that solves the original cumulant control problem.
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V. CONDITIONAL CUMULANTS UNDER EXPECTATION

Through Section IV only one state estimate has been encountered,
namely, the so-called '"fixed interval’ smoothed estimate, ;(klN). Its
error covariance kernel has been given the symbol Fs(k,l). In this sec-
tion, several other well-known least-squares state estimates will arise.
These are: the "filtered state estimate,"

x(k|K) & Bx(k) [F,}, (23)

the "one-step predicted state estimate,"

Rek|k-1) & E(x(0) |F 3, (24)

and the "fixed-point smoothed state estimate,"

R(tlk) 2 Elx(n) |F,), Tsk. (25)

The error covariance kernels associated with (23) and (24) are useful.
They are denoted by FF(k,l) and Fp(k,l), respectively. Defining a new

matrix

k
W (k,0) ézgl I3k, QT (2,0) 515 (K, KIQUIT, (K,0),  (26)

(20) can be rewritten as

N
Ny-q (KIN) = A (k[k) + MZM Wy.q (K,0)M(0)v(o]0-1), (27)

where

fiy. k0 & 1 et oe@re -3 oo kemokk]o . (28)

In addition, the fixed-interval smoothed estimate can be written as
N

R(L{N) = R(2|k) + ] T _(£,0)M(0)v(ala-1), (29)
~ gsk+1 P

where v(0|c-1) is the "innovations process’. This separation of the dy-

namical variables (present in the conditional cumulants) into causal and
9
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noncausal parts is the key to resolution of the admissibility difficulty.
It can be shown that the mean-conditional-cumulants can be written

entirely in terms of causal variables. These expressions are
N

_E{KIIN} a E{kz1 TR(Tp(k,k)Q(k)]

N
o T RN k|0QUORK[K)+uT (k-1)R(k-1)u(k-1)]}
k=1
? B, (30)
and
a-1 N o k
E{‘alN} = E{(a-1)!2 kzl TR[{Ps(k,k)*Za TZI [Fp(k,T)

P (e, 112 (1, k) -a T (kLK) =T (kK 1QEO T2 (k, k) JQ(K)]

+

N
ar2® kfl RT (k)@ (KK}

[~

E{K;}, wl. (31)

Optimization, in the cumulant control problem, over these objects

will couple control action to the fixed point smooth estimate of the state,

Thus, causal feedback control can be realized.

10
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VI. CONCLUSION

The results summarized in this report open the door to several
avenues of investigation and should enhance the appl%fgpility of linear
stochastic control theory. The details of this work are currently being
prepared for journal publication. In addition to the results presented
here, an analogous investigation has been conducted for continuous time
systems and minor investigations of the cumulant structure as applied to
estimation problems have also been carried out. The latter studies have
led to interesting observations, but inconclusive results. More research
is required here. It would be desirable to relax the Gaussian assumption
in this class of problems, but to date no mechanism for doing so has been
found for cumulants of order two or more.

Dynamical feedback control laws for certain cumulant control problems

have been derived in recursive form and will be published along with the

details of the cumulant class derivation. Properties of cumulant controllers
are totally unknown. Several suboptimal structures are appealing and should

be investigated. Some of these lead to interesting classes of Riccati-type

equations about which little is known [5].

11
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